Dose modification factors for 192Ir high‐dose‐rate irradiation using Monte Carlo simulations
نویسندگان
چکیده
A recently introduced brachytherapy system for partial breast irradiation, MammoSite, consists of a balloon applicator filled with contrast solution and a catheter for insertion of an 192Ir high-dose-rate (HDR) source. In using this system, the treatment dose is typically prescribed to be delivered 1 cm from the balloon's surface. Most treatment-planning systems currently in use for brachytherapy procedures use water-based dosimetry with no correction for heterogeneity. Therefore, these systems assume that full scatter exists regardless of the amount of tissue beyond the prescription line. This assumption might not be a reasonable one, especially when the tissue beyond the prescription line is thin. In such a case, the resulting limited scatter could cause an underdose to be delivered along the prescription line. We used Monte Carlo simulations to investigate how the thickness of the tissue between the surface of the balloon and the skin or lung affected the treatment dose delivery. Calculations were based on a spherical water phantom with a diameter of 30 cm and balloons with diameters of 4 cm, 5 cm, and 6 cm. The dose modification factor is defined as the ratio of the dose rate at the typical prescription distance of 1 cm from the balloon's surface with full scatter obtained using the water phantom to the dose rate with a finite tissue thickness (from 0 cm to 10 cm) beyond the prescription line. The dose modification factor was found to be dependent on the balloon diameter and was 1.098 for the 4-cm balloon and 1.132 for the 6-cm balloon with no tissue beyond the prescription distance at the breast-skin interface. The dose modification factor at the breast-lung interface was 1.067 for the 4-cm balloon and 1.096 for the 6-cm balloon. Even 5 cm of tissue beyond the prescription distance could not result in full scatter. Thus, we found that considering the effect of diminished scatter is important to accurate dosimetry. Not accounting for the dose modification factor may result in delivering a lower dose than is prescribed.
منابع مشابه
Monte Carlo and experimental relative dose determination for an Iridium-192 source in water phantom
Background: Monte Carlo and experimental relative dose determination in a water phantom, due to a high dose rate (HDR) 192Ir source is presented for real energy spectrum and monochromatic at 356 keV. Materials and Methods: The dose distribution has been calculated around the 192Ir located in the center of 30 cm ×30 cm ×30 cm water phantom using MCNP4C code by Monte Carlo method. Relati...
متن کاملDetermination of Dosimetric characteristics of a New 192Ir-PDR Brachytherapy Source According to AAPM TG- 43 Protocol using Monte Carlo simulation technique
Introduction: 192Ir is one of the important sources frequently used in brachytherapy. Up to now, a lot of commercial models of this source have been made which Ir-192 has been recently added to them. The aim of the present study is to determine the dosimetric parameters of this new source model based on the recommendations of TG-43(U1) protocol using Monte Carlo simulation tech...
متن کاملDetermination of TG-43 Dosimetric Parameters for Photon Emitting Brachytherapy Sources
Objective: Brachytherapy sources are widely used for the treatment of cancer. The report of Task Group No. 43 (TG-43) of American Association of Physicists in Medicine is known as the most common method for the determination of dosimetric parameters for brachytherapy sources. The aim of this study is to obtain TG-43 dosimetric parameters for 60Co, 137Cs, 192Ir and 103Pd brachyt...
متن کاملStudy of cancer cells response row K562 to Low-Dose- Beta irradiation and determination of absorbed dose using Monte Carlo method
Introduction: Cancer is, in essence, a genetic disease and is the second leading cause of death globally. Fortunately, many common types of cancer are treatable if detected early and of course there are many medications and treatments available today. Among the new methods to treat cancer, radiotherapy seems to be hopeful in patients with malignancies. This work investigates th...
متن کاملDosimetric characterization of round HDR 192Ir accuboost applicators for breast brachytherapy.
PURPOSE The AccuBoost brachytherapy system applies HDR 192Ir beams peripherally to the breast using collimating applicators. The purpose of this study was to benchmark Monte Carlo simulations of the HDR 192Ir source, to dosimetrically characterize the round applicators using established Monte Carlo simulation and radiation measurement techniques and to gather data for clinical use. METHODS Do...
متن کامل